Coordinate Systems ================== ADCIRC can operate in different coordinate systems depending on the application requirements and domain scale. This section describes the coordinate transformations and implementations in the model. Spherical Coordinates --------------------- For large domains where the Earth's curvature is significant, ADCIRC uses a spherical coordinate system: * Longitude (:math:`\lambda`): Angular distance east or west from the Prime Meridian * Latitude (:math:`\phi`): Angular distance north or south from the equator * Vertical coordinate (:math:`z`): Distance above or below the reference geoid The governing equations presented in the previous sections are formulated in spherical coordinates for global and regional applications. Cartesian Coordinates --------------------- For smaller domains where Earth's curvature effects are negligible, ADCIRC can operate in a Cartesian coordinate system: * :math:`x`: Eastward distance * :math:`y`: Northward distance * :math:`z`: Vertical distance from reference level The continuity equation in Cartesian coordinates is: .. math:: \frac{\partial \zeta}{\partial t} + \frac{\partial (UH)}{\partial x} + \frac{\partial (VH)}{\partial y} = 0 The momentum equations in Cartesian coordinates are: .. math:: \frac{\partial U}{\partial t} + \frac{\partial}{\partial x} \left( \frac{U^2}{H} \right) + \frac{\partial}{\partial y} \left( \frac{UV}{H} \right) - fV + g \frac{\partial \zeta}{\partial x} + \frac{\tau_{sx}}{\rho_0 H} - \frac{\tau_{bx}}{\rho_0 H} - \frac{1}{\rho_0 H} \frac{\partial p_s}{\partial x} + \frac{\partial}{\partial x} \left[ \frac{2 N_x}{H} \frac{\partial U}{\partial x} \right] + \frac{\partial}{\partial y} \left[ \frac{N_y}{H} \left( \frac{\partial U}{\partial y} + \frac{\partial V}{\partial x} \right) \right] = 0 .. math:: \frac{\partial V}{\partial t} + \frac{\partial}{\partial x} \left( \frac{UV}{H} \right) + \frac{\partial}{\partial y} \left( \frac{V^2}{H} \right) + fU + g \frac{\partial \zeta}{\partial y} + \frac{\tau_{sy}}{\rho_0 H} - \frac{\tau_{by}}{\rho_0 H} - \frac{1}{\rho_0 H} \frac{\partial p_s}{\partial y} + \frac{\partial}{\partial x} \left[ \frac{N_x}{H} \left( \frac{\partial U}{\partial y} + \frac{\partial V}{\partial x} \right) \right] + \frac{\partial}{\partial y} \left[ \frac{2 N_y}{H} \frac{\partial V}{\partial y} \right] = 0 Coordinate Transformations -------------------------- For regional applications, ADCIRC often employs a conformal map projection to transform between spherical and projected Cartesian coordinates. The most commonly used projections are: 1. **Mercator Projection**: * Preserves angles (conformal) * Distorts areas, especially at high latitudes * Transformation equations: .. math:: x = R \lambda .. math:: y = R \ln\left[\tan\left(\frac{\pi}{4} + \frac{\phi}{2}\right)\right] 2. **Lambert Conformal Conic**: * Preserves angles * Minimizes distortion in mid-latitudes * Commonly used for regional modeling in mid-latitudes 3. **Stereographic Projection**: * Conformal projection * Useful for polar regions * Minimal distortion near the projection center CPP Coordinate System --------------------- For some specialized applications, ADCIRC uses a Cartesian Coordinates with Polar Projection (CPP) system. This hybrid approach: * Maintains the simplicity of Cartesian equations * Accounts for Earth's curvature through carefully designed projections * Applies correction factors to the Coriolis and other terms The CPP coordinate system is defined by: .. math:: x = (R + h) \cos \phi \sin(\lambda - \lambda_0) .. math:: y = (R + h) [\sin\phi\cos\phi_0 - \cos\phi\sin\phi_0\cos(\lambda - \lambda_0)] where :math:`(\lambda_0, \phi_0)` are the coordinates of the projection origin. Vertical Coordinate Systems --------------------------- ADCIRC employs several vertical coordinate systems: 1. **Sigma Coordinates**: * Terrain-following coordinates that map the water column to a uniform layer * :math:`\sigma = \frac{z - \zeta}{\zeta + h}` ranges from 0 (surface) to -1 (bottom) * Advantages include natural handling of bathymetry 2. **Z-level Coordinates**: * Fixed vertical levels * Typically used in deeper waters * Provides better representation of stratification 3. **Hybrid Systems**: * Combination of sigma and z-level approaches * Optimizes advantages of both systems