Governing Equations =================== The ADCIRC model solves the shallow water equations, a form of the Navier-Stokes equations with traditional hydrostatic pressure and Boussinesq approximations. This section describes the fundamental equations that form the basis of the model. Continuity Equation ------------------- The depth-integrated continuity equation in spherical coordinates is: .. math:: \frac{\partial \zeta}{\partial t} + \frac{1}{R \cos \phi} \left[ \frac{\partial}{\partial \lambda} \left( U H \right) + \frac{\partial}{\partial \phi} \left( V H \cos \phi \right) \right] = 0 where: * :math:`\zeta` = free surface elevation relative to the geoid * :math:`t` = time * :math:`R` = radius of the Earth * :math:`\phi` = latitude * :math:`\lambda` = longitude * :math:`H = \zeta + h` = total water column depth * :math:`h` = bathymetric depth relative to the geoid * :math:`U` = depth-integrated velocity in longitude direction * :math:`V` = depth-integrated velocity in latitude direction Momentum Equations ------------------ The depth-integrated momentum equations in spherical coordinates are: .. math:: \frac{\partial U}{\partial t} + \frac{1}{R \cos \phi} \frac{\partial}{\partial \lambda} \left( \frac{U^2}{H} \right) + \frac{1}{R} \frac{\partial}{\partial \phi} \left( \frac{UV}{H} \right) - \frac{UV \tan \phi}{R H} - fV \\ + \frac{g}{R \cos \phi} \frac{\partial \zeta}{\partial \lambda} + \frac{\tau_{s\lambda}}{\rho_0 H} - \frac{\tau_{b\lambda}}{\rho_0 H} - \frac{1}{\rho_0 H} \left[ \frac{\partial}{\partial \lambda} \left( p_s \right) - \frac{\partial}{\partial \lambda} \int_{-h}^{\zeta} \int_{z'}^{\zeta} \frac{\partial \rho}{\partial \lambda'} g dz dz' \right] \\ + \frac{1}{R \cos \phi} \frac{\partial}{\partial \lambda} \left[ \frac{2 N_\lambda}{H} \frac{\partial U}{\partial \lambda} \right] + \frac{1}{R} \frac{\partial}{\partial \phi} \left[ \frac{N_\phi}{H} \left( \frac{\partial U}{\partial \phi} + \frac{\partial V}{\partial \lambda} - V \tan \phi \right) \right] = 0 .. math:: \frac{\partial V}{\partial t} + \frac{1}{R \cos \phi} \frac{\partial}{\partial \lambda} \left( \frac{UV}{H} \right) + \frac{1}{R} \frac{\partial}{\partial \phi} \left( \frac{V^2}{H} \right) + \frac{U^2 \tan \phi}{R H} + fU \\ + \frac{g}{R} \frac{\partial \zeta}{\partial \phi} + \frac{\tau_{s\phi}}{\rho_0 H} - \frac{\tau_{b\phi}}{\rho_0 H} - \frac{1}{\rho_0 H} \left[ \frac{\partial}{\partial \phi} \left( p_s \right) - \frac{\partial}{\partial \phi} \int_{-h}^{\zeta} \int_{z'}^{\zeta} \frac{\partial \rho}{\partial \phi'} g dz dz' \right] \\ + \frac{1}{R \cos \phi} \frac{\partial}{\partial \lambda} \left[ \frac{N_\lambda}{H} \left( \frac{\partial U}{\partial \phi} + \frac{\partial V}{\partial \lambda} - V \tan \phi \right) \right] + \frac{1}{R} \frac{\partial}{\partial \phi} \left[ \frac{2 N_\phi}{H} \frac{\partial V}{\partial \phi} \right] = 0 where: * :math:`f = 2 \Omega \sin \phi` = Coriolis parameter * :math:`\Omega` = angular speed of the Earth * :math:`g` = gravitational acceleration * :math:`\rho_0` = reference density of water * :math:`\rho` = perturbation density * :math:`p_s` = atmospheric pressure at the free surface * :math:`\tau_{s\lambda}, \tau_{s\phi}` = surface stress components * :math:`\tau_{b\lambda}, \tau_{b\phi}` = bottom stress components * :math:`N_\lambda, N_\phi` = lateral eddy viscosity coefficients Bottom Stress Formulation ------------------------- Bottom stress is parametrized using a quadratic friction law: .. math:: \frac{\tau_{b\lambda}}{\rho_0} = \frac{C_f U \sqrt{U^2 + V^2}}{H} .. math:: \frac{\tau_{b\phi}}{\rho_0} = \frac{C_f V \sqrt{U^2 + V^2}}{H} where :math:`C_f` is the bottom friction coefficient, which can be specified as a constant or calculated from: .. math:: C_f = \frac{g n^2}{H^{1/3}} for Manning's formulation, or: .. math:: C_f = \max \left[ C_{fmin}, \frac{\kappa^2}{\ln^2 \left( \frac{H}{z_0} \right)} \right] for the logarithmic formulation, where: * :math:`n` = Manning's roughness coefficient * :math:`\kappa` = von Karman constant (≈ 0.4) * :math:`z_0` = bottom roughness length * :math:`C_{fmin}` = minimum bottom friction coefficient